
Functions used in Actions 35-1

Chapter 35: Functions used in Actions

There is a set of supported functions that can be used in action stanzas.
Actions are described in Chapter 34: Actions and ACTION Keyword Values. In
the present chapter we give a general overview of functions, list and describe
all the supported functions, provide a couple of examples of functions within
actions, and list all the read-only variables available to the supported functions.

35.1 Overview of Functions

Table files and UPD configuration files often include actions. An action
corresponds to a command, usually a UPS command, and lists functions to
perform in addition to the command’s internal processes, when the command is
executed. The supported functions are listed and described in this chapter. A
function has the format:

<function_name>([<argument_1>] [, <argument_2>] ... [<delimiter>])

The default delimiter is the colon (:).

For example, the function:

envPrepend(<VARIABLE>, <value>)

prepends the specified value to an existing environment variable, using the
default delimiter.

Functions are not case-sensitive; e.g., envPrepend, envprepend, and
ENVPREPEND are all acceptable and equivalent. A function is specified in a
shell-independent manner, but contains enough information to allow it to be
transformed into a sh or csh family command (e.g., sourceRequired(), or
execute()), or to be interpreted directly by UPS (e.g.,
writeCompileScript()).

35-2 Functions used in Actions

35.2 Reversible Functions

In section 34.2.2 “Uncommands” as Actions we discussed commands that
have corresponding “uncommands”. Usually, when the “uncommand” is run,
the desired behavior is to reverse all the functions that were performed when
the original command was run. Many of the supported functions are
reversible, some are not.

Wherever you plan to default the “uncommand” action (i.e., to specifically not
include an ACTION=UNCOMMAND stanza) and you want UPS to exactly
reverse the ACTION=COMMAND functions, make sure that you only include
reversible functions under ACTION=COMMAND. Reversible functions are
identified as such in the descriptions in section 35.3 Function Descriptions.

35.3 Function Descriptions

35.3.1 addAlias

Description

Add an alias (C shell family) or function (Bourne shell family). A %s in the
<VALUE> marks where the argument list should go. Reversible (runs
unAlias).

Syntax

addAlias(<NAME>, <VALUE>)

Example 1

addAlias(askfor, ‘echo May I have some %s, please\?’)

Defines the alias askfor, which when run with an argument like cake,
e.g.,:

% askfor cake

produces the response:
May I have some cake, please?

Example 2

addAlias(setup,'${UPS_SOURCE} `${UPS_PROD_DIR}/bin/ups setup %s`')

Functions used in Actions 35-3

${UPS_SOURCE} is set to “.” or “source” depending on the shell, and
%s is presumed to stand for a product name. This defines the alias setup.
When issued with a product name, e.g.,

% setup upd

it sources the executable ${UPS_PROD_DIR}/bin/ups with the
arguments setup and upd.

35.3.2 doDefaults

Description

Perform the default functions for the command corresponding to the specified
action (only SETUP and UNSETUP have default functions). If no action listed
(e.g., doDefaults()), then the action under which this function occurs is
used. Reversible (runs doDefaults).

Note: If an ACTION corresponding to the given command is included in the
file, the command’s default functions will be executed only if doDefaults
is specified underneath it. If there is no ACTION for the command, and hence
no doDefaults function listed, the default functions will be executed
when the command is issued.

Syntax

doDefaults([<ACTION>])

Example

doDefaults([SETUP])

Specifies that the default functions for the setup command will be run
when the command is issued. More typically, this is specified in the following
manner:

ACTION=SETUP

 doDefaults()

35-4 Functions used in Actions

35.3.3 Else

Description

A conditional, to be used with If and EndIf or with Unless and
EndUnless. Else takes no command string. Else is optional, but we
recommend including it for clarity it even if no code follows it. See sections
35.3.17 If and 35.3.33 Unless for descriptions of processing. Also see sections
35.3.4 EndIf and 35.3.5 EndUnless.

Syntax

Else()

Example

Action=Setup

ProdDir()

SetupEnv()

EnvSetIfNotSet(FOO,":")

EnvPrepend(FOO, ${UPS_PROD_DIR}/basic)

If(test -d ${UPS_PROD_DIR}/exciting)

 EnvPrepend(FOO, ${UPS_PROD_DIR}/exciting)

Else()

 EnvPrepend(FOO, ${UPS_PROD_DIR}/boring)

EndIf(test -d ${UPS_PROD_DIR}/exciting)

35.3.4 EndIf

Description

Closes a conditional; to be used with If and optionally Else. The EndIf
statement must include a command that exactly matches the command in the
corresponding If statement. This is because UPS must be able to invert this
to get an unsetup action (to unsetup, the order gets inversed and the inverse of
the actions are called). Also see sections 35.3.17 If and 35.3.3 Else.

Syntax

EndIf(<same command as used in If statement>)

Example

Action=Setup

Functions used in Actions 35-5

ProdDir()

SetupEnv()

EnvSetIfNotSet(FOO,":")

EnvPrepend(FOO, ${UPS_PROD_DIR}/basic)

If(test -d ${UPS_PROD_DIR}/exciting)

 EnvPrepend(FOO, ${UPS_PROD_DIR}/exciting)

Else()

 EnvPrepend(FOO, ${UPS_PROD_DIR}/boring)

EndIf(test -d ${UPS_PROD_DIR}/exciting)

35.3.5 EndUnless

Description

Closes a conditional; to be used with Unless and optionally Else. The
EndUnless statement must include a command that exactly matches the
command in the corresponding If statement. This is because UPS must be
able to invert this to get an unsetup action (to unsetup, the order gets inversed
and the inverse of the actions are called). Also see sections 35.3.33 Unless and
35.3.3 Else.

Syntax

EndUnless(<same command as used in Unless statement>)

Example

Action=Setup

ProdDir()

SetupEnv()

EnvSetIfNotSet(FOO,":")

EnvPrepend(FOO, ${UPS_PROD_DIR}/basic)

Unless(test -d ${UPS_PROD_DIR}/exciting)

 EnvPrepend(FOO, ${UPS_PROD_DIR}/boring)

Else()

 EnvPrepend(FOO, ${UPS_PROD_DIR}/exciting)

EndUnless(test -d ${UPS_PROD_DIR}/exciting)

35-6 Functions used in Actions

35.3.6 envAppend

Description

Append <value> to existing environment variable. Reversible (runs
envRemove).

It is better to append than prepend if you just want to provide a value in case
one is not there. If you want to override any existing value, you should
prepend.

Note: Use the function pathAppend for $PATH.

Syntax

envAppend(<VARIABLE>, <value> [, <delimiter>])

Example

envAppend(PYTHONPATH, ${UPS_PROD_DIR}/lib)

Appends the value of ${UPS_PROD_DIR}/lib to the variable
PYTHONPATH, using the default delimiter.

35.3.7 envPrepend

Description

Prepend <value> to existing environment variable. Reversible (runs
envRemove).

It is better to prepend than append if you want to override any existing value.
If you just want to provide a value in case one is not there, you should append.

Note: Use the function pathPrepend for $PATH.

Syntax

envPrepend(<VARIABLE>, <value> [, <delimiter>])

Example

envPrepend(PYTHONPATH, ${UPS_PROD_DIR}/lib)

Prepends the value of ${UPS_PROD_DIR}/lib to the variable
PYTHONPATH, using the default delimiter.

Functions used in Actions 35-7

35.3.8 envRemove

Description

Remove the string <value> from existing environment variable.

Note: Use the function pathRemove for $PATH.

Syntax

envRemove(<VARIABLE>, <value> [, <delimiter>])

Example

envRemove(PYTHONPATH, ${UPS_PROD_DIR}/lib)

Removes the value of ${UPS_PROD_DIR}/lib from the variable
PYTHONPATH; assumes the default delimiter.

35.3.9 envSet

Description

Set a new environment variable. This is particularly useful for representing
long strings. Reversible (runs envUnset).

Note: Use the function pathSet for $PATH.

Syntax

envSet(<VARIABLE>, <value>)

Example

envSet(UPD_USERCODE_DIR, ${UPS_THIS_DB})

Sets ${UPD_USERCODE_DIR} (the local database used by UPD) to
${UPS_THIS_DB} (the database in which the product is declared).

35.3.10 envSetIfNotSet

Description

Set a new environment variable, if not already set. This is particularly useful
for representing long strings.

35-8 Functions used in Actions

Syntax

envSetIfNotSet(<VARIABLE>, <value>)

Example

envSetIfNotSet(HOST, ‘long_hostname‘)

If not already set, this sets the variable HOST to a long hostname.

35.3.11 envUnset

Description

Unset existing environment variable.

Syntax

envUnset(<VARIABLE>)

Example

envUnset(MYVAR)

Unsets the variable $MYVAR.

35.3.12 exeAccess

Description

Check for access to specified existing executable through the $PATH. If
executable is found continue. If not found, exit with error.

Syntax

exeAccess(<executable>)

Example

exeAccess(gcc)

Ensures that a version of the product gcc is in your $PATH.

Functions used in Actions 35-9

35.3.13 exeActionOptional

Description

Process the functions associated with the specified action for the same product
instance. Do not fail if the action doesn’t exist. Reversible.

Syntax

exeActionOptional("<newaction>")

Example

exeActionOptional("CONFIGURE")

Process the functions in CONFIGURE action. If no CONFIGURE action,
processing continues.

35.3.14 exeActionRequired

Description

Process the functions associated with the specified action for the same product
instance. Fail if it doesn’t exist. Reversible.

Syntax

exeActionRequired("<newaction>")

Example

exeActionRequired("CONFIGURE")

Process the functions in CONFIGURE action. If no CONFIGURE action,
processing fails.

35.3.15 execute

Description

Execute a shell-independent command and (optionally) assign the output to an
environment variable, <VARIABLE>.

35-10 Functions used in Actions

The functions execute, sourceRequired, sourceReqCheck,
sourceOptional, and sourceOptCheck each take a required
parameter (UPS_ENV_FLAG) which indicates whether to define UPS local
variables. This parameter can take the following values:

UPS_ENV define all local UPS environment variables before
sourcing (the script or command relies on these being
defined)

NO_UPS_ENV do not define the local UPS environment variables (the
script or command doesn’t use them)

If the optional third argument, <VARIABLE>, is not specified, then the
specified command is executed but the output from that command is not saved.
This command does not have to be shell-independent.

Syntax

execute("<command>", <UPS_ENV_FLAG>, [, <VARIABLE>])

Example

execute("echo Call final installation script for
${UPS_PROD_NAME} ${UPS_PROD_VERSION}", NO_UPS_ENV)

 (All on one line.) UPS echoes the given text and sources the current
script for the product.

35.3.16 fileTest

Description

Run a shell test on <file>, fail if <test> is not true (see man test).

Syntax

fileTest(<file>, <test> [, <errormessage>])

Example

fileTest(/, -w, "You must be root to run this command.")

This tests for write access in the root directory and returns the shown error
message if the test fails.

Functions used in Actions 35-11

35.3.17 If

Description

A conditional, to be used with EndIf and optionally with Else, in the
order If(<command>)...Else()...Endif(<command>). We
recommend that Else always be included for clarity, even if no code follows
it.

• If the command in the If statement succeeds, then UPS runs the code
following the If statement and preceding any Else and/or EndIf
statement.

• If the command result is false, then UPS runs the code following the
Else statement and preceding the EndIf statement. If there is no
Else statement, UPS does nothing.

 Also see sections 35.3.4 EndIf and 35.3.3 Else.

A conditional If()...Else()...Endif() structure has no effect on
dependencies. It may not work as you expect if you put If()...EndIf()
around SetupOptional() and/or SetupRequired() statements.
Developers writing table files that use If() statements to conditionally run
setup commands must test thoroughly using setup -V, and must read the
generated script files.

Syntax

If(<command>)

Example

Here is a standard example:
Action=Setup

ProdDir()

SetupEnv()

EnvSetIfNotSet(FOO,":")

EnvPrepend(FOO, ${UPS_PROD_DIR}/basic)

If(test -d ${UPS_PROD_DIR}/exciting)

 EnvPrepend(FOO, ${UPS_PROD_DIR}/exciting)

Else()

 EnvPrepend(FOO, ${UPS_PROD_DIR}/boring)

EndIf(test -d ${UPS_PROD_DIR}/exciting)

Here is an example showing behavior with dependencies. If foo depends on
bar (i.e., bar appears in foo’s dependency list), then the code:

 SetupRequired(foo)

 If(some command that’s true)

35-12 Functions used in Actions

 SetupRequired(bar)

 Else()

 Endif(some command)

puts nothing inside the If statement in the generated script files, since the
SetupRequired(bar) is redundant.

Similarly, if foo depends on bar v2, then:
 If(some command)

 SetupRequired(bar v1)

 Else()

 SetupRequired(bar v2)

 Endif(some command)

sets up either bar v1 or nothing, since the second one is redundant. If you
want different dependencies, you must use different stanzas in the table file.

35.3.18 pathAppend

Description

Append <value> to existing $PATH-like environment variable. Reversible
(runs pathRemove).

It is better to append than prepend if you just want to provide a value in case
one is not there. If you want to override any existing value, you should
prepend.

Syntax

pathAppend(<VARIABLE>, <value> [, <delimiter>])

Example

pathAppend(PATH, ${UPS_PROD_DIR}/bin)

Appends the value ${UPS_PROD_DIR}/bin to the $PATH variable using
the default delimiter.

35.3.19 pathPrepend

Description

Prepend <value> to existing $PATH-like environment variable. Reversible
(runs pathRemove).

It is better to prepend than append if you want to override any existing value.
If you just want to provide a value in case one is not there, you should append.

Functions used in Actions 35-13

Syntax

pathPrepend(<VARIABLE>, <value> [, <delimiter>])

Example

pathPrepend(PATH, ${UPS_PROD_DIR}/bin)

Prepends the value ${UPS_PROD_DIR}/bin to the $PATH variable using
the default delimiter.

35-14 Functions used in Actions

35.3.20 pathRemove

Description

Remove the string <value> from existing $PATH-like environment
variable. Reversible (runs pathAppend).

Syntax

pathRemove(<VARIABLE>, <value> [, <delimiter>])

Example

pathRemove(PATH, ${UPS_PROD_DIR}/bin)

Removes the value ${UPS_PROD_DIR}/bin from the $PATH variable.

35.3.21 pathSet

Description

Set a $PATH-like environment variable (in csh family, setting a $PATH is
different than setting other environment variables). No choice of delimiter
offered. Reversible (runs envUnset).

If this gets set wrong, your $PATH could get deleted. (To recover from this
problem, should it occur, simply run setup setpath.)

Syntax

pathSet(<VARIABLE>, <value>)

Example

pathSet(PATH, /afs/fnal.gov/ups/<prod1/v1_0/SunOS+5/bin: ...)

Sets the $PATH to the value given (sample value truncated after first delimiter
for brevity).

35.3.22 prodDir

Description

Set the $<PRODUCT>_DIR environment variable to the root directory of the
product instance. Reversible (runs unProdDir).

Functions used in Actions 35-15

Syntax

prodDir()

35.3.23 setupEnv

Description

Set the $SETUP_<PRODUCT> environment variable so that product can later
be unsetup. Reversible (runs unsetupEnv).

Syntax

setupEnv()

35.3.24 setupOptional

Description

Setup another UPS product as a dependency, do not fail if the product doesn’t
exist. Reversible (runs unsetupOptional).

Syntax

The syntax is similar to the command setup:

setupOptional("[<options>] <product> [<version>]")

Example

setupOptional("perl")

Setup the default instance of the product perl, if available. Do not fail if not
found.

35.3.25 setupRequired

Description

Setup another UPS product as a dependency; fail if product not found.
Reversible (runs unsetupRequired).

35-16 Functions used in Actions

Syntax

The syntax is similar to the command setup:

setupRequired("[<options>] <product> [<version>]")

Example

setupRequired("-j Info")

Setup the default instance of the product Info and no dependencies; fail if not
available.

35.3.26 sourceCompileOpt

Description

If <fileName> exists, then source it and skip remaining functions;
otherwise just complete the remaining functions. This is typically used in
conjunction with writeCompileScript; see section 35.3.38
writeCompileScript.

Syntax

sourceCompileOpt("<fileName>")

Example

sourceCompileOpt("/my/compile/script")

This sources the specified script which was created with
writeCompileScript. If script doesn’t exist, process continues.

35.3.27 sourceCompileReq

Description

Source <fileName> and skip all remaining functions; fail if file not found.
This is typically used in conjunction with writeCompileScript; see
section 35.3.38 writeCompileScript.

Syntax

sourceCompileReq("<fileName>")

Functions used in Actions 35-17

Example

sourceCompileReq("/my/compile/script")

This sources the specified script which was created with
writeCompileScript. If script doesn’t exist, process fails.

35-18 Functions used in Actions

35.3.28 sourceOptCheck

Description

Check if specified script exists and if so, source it and check return status for
error. If error, abort script and return. Reversible (runs sourceOptCheck
on the “un” script, e.g., current and uncurrent).

The functions execute, sourceOptCheck, sourceOptional,
sourceReqCheck, and sourceRequired each take a required
parameter (UPS_ENV_FLAG) which indicates whether to define UPS local
variables. This parameter can take the following values:

UPS_ENV define all local UPS environment variables before
sourcing (the script or command relies on these being
defined)

NO_UPS_ENV do not define the local UPS environment variables (the
script or command doesn’t use them)

The functions sourceOptCheck, sourceOptional,
sourceReqCheck, and sourceRequired each take an optional
parameter (EXIT_FLAG). This parameter can take the following values:

CONTINUE after sourcing the script, continue with the next function
(the default)

EXIT after sourcing the script, skip the rest of the functions

Syntax

sourceOptCheck(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceOptCheck(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If so, first define all local
UPS environment variables, then source the script and check return status for
error. If error, abort script and return.

Functions used in Actions 35-19

35.3.29 sourceOptional

Description

Check if <SCRIPT> exists and if so, source it. If script not found, continue.
Reversible (runs sourceOptional on the “un” script, e.g., current
and uncurrent).

See section 35.3.28 sourceOptCheck for information about the parameters
UPS_ENV_FLAG and EXIT_FLAG.

Syntax

sourceOptional(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceOptional(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If so, first define all local
UPS environment variables, then source the script. If not, continue.

35.3.30 sourceReqCheck

Description

Source <SCRIPT> and check return status for error; fail if script not found.
If error, abort script and return. Reversible (runs sourceOptCheck on the
“un” script, e.g., current and uncurrent).

See section 35.3.28 sourceOptCheck for information about the parameters
UPS_ENV_FLAG and EXIT_FLAG.

Syntax

sourceReqCheck(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceReqCheck(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If not, it will fail. If script
exists, first define all local UPS environment variables, then source the script
and check return status for error. If error, abort script and return.

35-20 Functions used in Actions

35.3.31 sourceRequired

Description

Source <SCRIPT>; fail if script not found. Return status not checked.
Reversible (runs sourceOptional on the “un” script, e.g., current
and uncurrent).

See section 35.3.28 sourceOptCheck for information about the parameters
UPS_ENV_FLAG and EXIT_FLAG.

Syntax

sourceRequired(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceRequired(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If not, it will fail. If script
exists, first define all local UPS environment variables, then source the script.

35.3.32 unAlias

Description

Remove alias/function of specified name.

Syntax

unAlias(<NAME>)

35.3.33 Unless

Description

A conditional; to be used with EndUnless and optionally with Else, in
the order
Unless(<command>)...Else()...EndUnless(<command>).
The Unless statement must include a command. If the command result is
false, UPS executes statements that follow Unless and that precede either
EndUnless or Else, whichever it encounters. If the command result is

Functions used in Actions 35-21

true and an Else statement exists, UPS executes statements that follow
Else and precede EndUnless. If the command is true and no Else
statement exists, UPS does nothing.

See also sections 35.3.3 Else and 35.3.5 EndUnless. See section 35.3.17 If for
information on dependencies; EndUnless works in an analogous manner.

Syntax

Unless(<command>)

Example

Action=Setup

ProdDir()

SetupEnv()

EnvSetIfNotSet(FOO,":")

EnvPrepend(FOO, ${UPS_PROD_DIR}/basic)

Unless(test -d ${UPS_PROD_DIR}/exciting)

 EnvPrepend(FOO, ${UPS_PROD_DIR}/boring)

Else()

 EnvPrepend(FOO, ${UPS_PROD_DIR}/exciting)

EndUnless(test -d ${UPS_PROD_DIR}/exciting)

35.3.34 unProdDir

Description

Unsets the $<PRODUCT>_DIR environment variable. Reversible (runs
prodDir).

Syntax

unProdDir()

35-22 Functions used in Actions

35.3.35 unsetupEnv

Description

Unsets the $SETUP_<PRODUCT> environment variable. Reversible (runs
setupEnv).

Syntax

unsetupEnv()

35.3.36 unsetupOptional

Description

Runs unsetup on a product, does not fail if the product doesn’t exist or if
it’s already unsetup. Reversible (runs setupOptional).

Syntax

The syntax is similar to the command unsetup:

unsetupOptional("[<options>] <product> [<version>]")

For previously setup products, the only options that are recognized include
-e, -j, and -v.

Example

unsetupOptional("perl")

Unsets the default instance of the product perl, if already setup. Does not fail
if product doesn’t exist or has already been unsetup.

Functions used in Actions 35-23

35.3.37 unsetupRequired

Description

Runs unsetup on a product; fails if product not found. Reversible (runs
setupRequired).

Syntax

The syntax is similar to the command unsetup:

unsetupRequired("<options>] <product> [<version>]")

For previously setup products, the only options that are recognized include
-e, -j, and -v.

Example

unsetupRequired("perl")

Unsets the default instance of the product perl, if already setup. Fails if
product doesn’t exist or has already been unsetup.

35.3.38 writeCompileScript

Description

Write a file of compiled functions for the given ACTION keyword value. It
actually writes four files in total: <script>.[c]sh and
un<script>.[c]sh.

The function writeCompileScript takes an optional parameter which
can be one of the following:

OLD if fileName exists, move the old one to fileName.old
before creating the new one.

DATE if fileName exists, move the old one to
fileName.{datestamp} before creating the new one.

Syntax

writeCompileScript("<fileName>", "<ACTION>" [, OLD|DATE])

Example

writeCompileScript("/my/compile/script", "SETUP", OLD)

35-24 Functions used in Actions

This executes the SETUP action and writes the output of the functions to the
specified script, first saving the pre-existing script to
/my/compile/script.old. This function knows to ignore the function
sourceCompileReq or sourceCompileOpt if it encounters either at
the top of the list of SETUP functions. See sections 35.3.26
sourceCompileOpt and 35.3.27 sourceCompileReq.

35.4 Functions under Consideration for
Future Implementation

copyCatMan Will copy catman files from source directory
specified in table file by
CATMAN_SOURCE_DIR to target directory
specified in the UPS database configuration file
by CATMAN_TARGET_DIR. Reversible (will
run uncopyCatMan)

copyHtml Will copy html files from source directory
specified in table file by HTML_SOURCE_DIR
to target directory specified in the UPS database
configuration file by HTML_TARGET_DIR.

copyInfo Will copy Info files from source directory
specified in table file by INFO_SOURCE_DIR
to target directory specified in the UPS database
configuration file by INFO_TARGET_DIR.

copyMan Will copy man files from source directory
specified in table file by MAN_SOURCE_DIR
to target directory specified in the UPS database
configuration file by MAN_TARGET_DIR.
Reversible (will run uncopyMan)

copyNews Will copy news files from source directory
specified in table file by NEWS_SOURCE_DIR
to target directory specified in the UPS database
configuration file by NEWS_TARGET_DIR.

else () Will begin an alternative branch

elseif (<condition>)Will proceed to another condition

endif () Will end a conditional branch

if (<condition>) Will begin a conditional branch

Functions used in Actions 35-25

uncopyCatMan Will remove catman files from target directory
specified in the UPS database configuration file
by CATMAN_TARGET_DIR. Reversible (will
run copyCatMan)

uncopyMan Will remove man files from target directory
specified in the UPS database configuration file
by MAN_TARGET_DIR. Reversible (will run
copyMan)

35-26 Functions used in Actions

35.5 Examples of Functions within Actions

35.5.1 A setup Action

This first example shows a setup action:
ACTION=SETUP

 prodDir()

 setupEnv()

 pathAppend(PATH, ${UPS_PROD_DIR}/bin)

 setupRequired("crow")

 setupOptional("gypsy")

When the product instance gets setup, UPS does five things in addition to
setup’s internal processes:

• sets the variable $<PRODUCT>_DIR to the product root directory

• sets the variable $SETUP_<PRODUCT> to identify the product instance
for unsetup

• appends the product’s bin directory to the path

• sets up the product crow (and aborts the setup if a suitable current
instance of crow is not available)

• sets up the product gypsy, if found (setup proceeds whether or not a
suitable current instance of gypsy is available).

35.5.2 A “declare as current” Action

A second example illustrates steps for UPS to complete when the product
instance is declared as current to the database:

ACTION=CURRENT

 execute("echo Call final install script for
${UPS_PROD_NAME} ${UPS_PROD_VERSION}")

 sourceRequired(${UPS_UPS_DIR}/current, UPS_ENV)

UPS echoes the given text and sources the current script for the product.

Functions used in Actions 35-27

35.6 Local Read-Only Variables Available to
Functions

The read-only variables listed below are set by UPS and available for use with
the functions described in section 35.3 Function Descriptions. In several
functions, the flag UPS_ENV_FLAG controls whether these variables get set
(see section 35.3.28 sourceOptCheck).

These UPS variables do not get exported to the environment, but exist only for
the duration of, and in the context of, the processing of an action (actions are
described in Chapter 34: Actions and ACTION Keyword Values). By contrast,
the environment variables $<PRODUCT>_DIR and $SETUP_<PRODUCT>
(described in section 23.1 setup under Environment Variables Set by Default
During setup), if defined, remain set and available for use as long as the
product is setup.1

35.6.1 List of Current Read-Only Variables

When you use these variables, always enclose them in curly brackets ({}) as
shown in the list.

1. The setup command and these variables are described in section 23.1 setup.

Local Read-Only Variable Description of Value

${PRODUCTS} Generally has the same value as the environment variable
$PRODUCTS. The difference is that (read-only) ${PROD-
UCTS} keeps the value set at the time UPS was invoked,
whereas (environment) $PRODUCTS may be reset.
You can reset $PRODUCTS (i.e., using the function
envSet (PRODUCTS, "<value>" in the
table file) in order to use a new value in the temp file;
$PRODUCTS won’t get overwritten by ${PRODUCTS} as
the temp file executes. See the example that follows this
table.
Note that this is not valid for the other read-only variables in
this table; if you try to reset them (as environment vari-
ables), your values will get overwritten by the read-only
values as the temp file executes.

${REQ_PROD_QUALIFIERS} Requested product qualifiers (including optional ones), as
opposed to the declared product qualifiers.
For example, if you run setup fred -q
opt1:opt2 and fred is declared with QUALIFI-
ERS="opt1", then ${UPS_PROD_QUALIFIERS} is
"opt1", while ${REQ_PROD_QUALIFIERS} is
"opt1:opt2".

35-28 Functions used in Actions

${UPS_COMPILE} Location and file name of a file containing compiled func-
tions (see Chapter 38: Use of Compile Scripts in Table
Files). It has the value of the combined keywords:
COMPILE_FILE_DIR/COMPILE_FILE

${UPS_DIR} Entire path to the ups directory of a product. (This is not
the same as the environment variable $UPS_DIR that points
to the root directory of the UPS product!)

${UPS_EXTENDED} This set to 1 if the -e (extended) option was specified in
the setup command (see section 25.2.1 -e)

${UPS_OPTIONS} Option string that was passed with the -O (upper case o)
flag (see Chapter 25: Generic Command Option Descrip-
tions)

${UPS_ORIGIN} This specifies the location of the master source files.

${UPS_OS_FLAVOR} Operating system flavor as obtained from ups fla-
vor

${UPS_OVERRIDE} This contains the UPS command line option -H <fla-
vor> that would override the default; not set by default.
Can be used to "lie" to UPS about the flavor of the machine.
May be expanded in the future to contain other UPS com-
mand line options.

${UPS_PROD_DIR} Product instance root directory; same value as the environ-
ment variable $<PRODUCT>_DIR

${UPS_PROD_FLAVOR} Product flavor chosen during instance matching

${UPS_PROD_NAME} Product name as declared in the UPS database

${UPS_PROD_QUALIFIERS} Product qualifiers chosen during instance matching.
These are the qualifiers declared with the selected instance.
They are not necessarily the same set of qualifiers specified
on the command line via the -q option (the UPS match-
ing algorithm chooses the “best fit” based on the specified
qualifiers; not necessarily an exact match).

${UPS_PROD_VERSION} Product version as declared in the UPS database

${UPS_SHELL} Value can be csh or sh.

${UPS_SOURCE} Value can be “source” for csh or “.” for sh

${UPS_THIS_DB} Database in which this product instance is declared.

${UPS_UPS_DIR} Path to the product instance’s ups directory

${UPS_VERBOSE} This is set to 1 if the -v (verbose) option was specified
(see Chapter 25: Generic Command Option Descriptions).

Local Read-Only Variable Description of Value

Functions used in Actions 35-29

$PRODUCTS vs. ${PRODUCTS}: Resetting $PRODUCTS

This example is intended to illustrate the interaction between the read-only
variable ${PRODUCTS} and the environment variable $PRODUCTS. There
are a couple of potentially confusing points.

Let ${PRODUCTS} be set to /fnal/ups/db. Say in your table file you
set $PRODUCTS to /path/to/mydb in the SETUP action, like this:

ACTION=SETUP

 envSet(PRODUCTS, "/path/to/mydb:${PRODUCTS}")

Now ${PRODUCTS} and $PRODUCTS are different. The following
execute functions show the difference in the values. The function:

 execute("echo $PRODUCTS", NO_UPS_ENV)

would produce:

/path/to/mydb:/fnal/ups/db

whereas the same function using ${PRODUCTS}, e.g.,
 execute("echo ${PRODUCTS}", NO_UPS_ENV)

would produce only:

/fnal/ups/db

$PRODUCTS vs. ${PRODUCTS}: Effects on setup and ups
depend

Another issue is the setup... functions. Say you have a product fred
v1_0 declared in /path/to/mydb (the database not included in
${PRODUCTS}). If you include a setupRequired or
setupOptional function later in the SETUP action, e.g.,:

ACTION=SETUP

 envSet(PRODUCTS, "/path/to/mydb:${PRODUCTS}")

 setupRequired(fred v1_0)

the setup will fail because these functions only reference the read-only variable
${PRODUCTS}, which in this case doesn’t include your product. You can get
around this by using the execute function to set the product up:

 execute ("setup fred v1_0", NO_UPS_ENV)

This function uses the environment variable $PRODUCTS.

Remember though, when you run a ups depend on a product, only
products identified in setupRequired or setupOptional functions
get listed. You would not see fred v1_0 listed in the ups depend output
for the main product in our example.

35-30 Functions used in Actions

35.6.2 Read-Only Variables under Consideration for the
Future

We plan to make the keyword values, listed in section 28.4 List of Supported
Keywords, available as read-only variables available to functions. The
read-only variable corresponding to a keyword will typically include “UPS_”
prepended to it. E.g., the read-only variable corresponding to the keyword
DECLARED will be ${UPS_DECLARED}. Several of these are already
implemented in this way, e.g., ${UPS_PROD_DIR} corresponds to the
keyword PROD_DIR.

